Sodium along with low-threshold potassium currents enhance coincidence detection of subthreshold noisy signals in MSO neurons.
نویسندگان
چکیده
Voltage-dependent membrane conductances support specific neurophysiological properties. To investigate the mechanisms of coincidence detection, we activated gerbil medial superior olivary (MSO) neurons with dynamic current-clamp stimuli in vitro. Spike-triggered reverse-correlation analysis for injected current was used to evaluate the integration of subthreshold noisy signals. Consistent with previous reports, the partial blockade of low-threshold potassium channels (I(KLT)) reduced coincidence detection by slowing the rise of current needed on average to evoke a spike. However, two factors point toward the involvement of a second mechanism. First, the reverse correlation currents revealed that spike generation was associated with a preceding hyperpolarization. Second, rebound action potentials are 45% larger compared to depolarization-evoked spikes in the presence of an I(KLT) antagonist. These observations suggest that the sodium current (I(Na)) was substantially inactivated at rest. To test this idea, I(Na) was enhanced by increasing extracellular sodium concentration. This manipulation reduced coincidence detection, as reflected by slower spike-triggering current, and diminished the hyperpolarization phase in the reverse-correlation currents. As expected, a small outward bias current decreased the pre-spike hyperpolarization phase, and TTX blockade of I(Na) nearly eliminated the hyperpolarization phase in the reverse correlation current. A computer model including Hodgkin-Huxley type conductances for spike generation and for I(KLT) showed reduction in coincidence detection when I(KLT) was reduced or when I(Na) was increased. We hypothesize that desirable synaptic signals first remove some inactivation of I(Na) and reduce activation of I(KLT) to create a brief temporal window for coincidence detection of subthreshold noisy signals.
منابع مشابه
Enhancement of signal-to-noise ratio and phase locking for small inputs by a low-threshold outward current in auditory neurons.
Neurons possess multiple voltage-dependent conductances specific for their function. To investigate how low-threshold outward currents improve the detection of small signals in a noisy background, we recorded from gerbil medial superior olivary (MSO) neurons in vitro. MSO neurons responded phasically, with a single spike to a step current injection. When bathed in dendrotoxin (DTX), most cells ...
متن کاملPhasic Firing and Coincidence Detection by Subthreshold Negative Feedback: Divisive or Subtractive or, Better, Both
Phasic neurons typically fire only for a fast-rising input, say at the onset of a step current, but not for steady or slow inputs, a property associated with type III excitability. Phasic neurons can show extraordinary temporal precision for phase locking and coincidence detection. Exemplars are found in the auditory brain stem where precise timing is used in sound localization. Phasicness at t...
متن کاملDynamic interaction of Ih and IK-LVA during trains of synaptic potentials in principal neurons of the medial superior olive.
In neurons of the medial superior olive (MSO), voltage-gated ion channels control the submillisecond time resolution of binaural coincidence detection, but little is known about their interplay during trains of synaptic activity that would be experienced during auditory stimuli. Here, using modeling and patch-clamp recordings from MSO principal neurons in gerbil brainstem slices, we examined in...
متن کاملThe Role of Coincidence-Detector Neurons in the Reliability and Precision of Subthreshold Signal Detection in Noise
Subthreshold signal detection is an important task for animal survival in complex environments, where noise increases both the external signal response and the spontaneous spiking of neurons. The mechanism by which neurons process the coding of signals is not well understood. Here, we propose that coincidence detection, one of the ways to describe the functionality of a single neural cell, can ...
متن کاملPerisomatic voltage-gated sodium channels actively maintain linear synaptic integration in principal neurons of the medial superior olive.
Principal neurons of the medial superior olive (MSO) compute azimuthal sound location by integrating phase-locked inputs from each ear. While previous experimental and modeling studies have proposed that voltage-gated sodium channels (VGSCs) play an important role in synaptic integration in the MSO, these studies appear at odds with the unusually weak active backpropagation of action potentials...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 91 6 شماره
صفحات -
تاریخ انتشار 2004